KBase Automation Group 26 - Senior Design

Client/Advisor: Dr. Myra Cohen

Jake Veatch, Daulton Leach, Daniel Way, Sergey Gernega, Hunter Hall, Caleb Meyer

DOE Systems Biology Knowledgebase

https://www.kbase.us/acknowledgements/

KBase Ecosystem

- Web Application
 - Non-technical (BIOLOGISTS)

- Software Development Kit (SDK)
 - Technical
 - Not the focus

The Flux Balance Analysis (FBA)

KBose Gap&FBA 101 - V2020 - Copy Created by: Mikaeta Cashman (mikaeta)	acashman) 🖌 ?- O- <- 🖺 🕅	KBose Gap&FBA 101 - V2020 - Copy Created by: Mikaela Cashman (mikaela	acashman) 🖌 ?- O- 😚 🖺
Analyze Narratives		Analyze Narratives	0
vDATA Qi≗rc→	FBA Run Flux Balance Analysis Use flux balance analysis to predict metabolic	v DATA Q LE T C →	Expression condition
Btheta.FBA 163 FBA 1 day ago	Run Configure Info Job Status Result	Bheta.FBA v63 FBA 1 day ago	V Available items - no available items
Bob // FBAModel 2 months ago	Input Objects (I advanced parameter showing) hide advanced	Bob vi FBAModel 2 months ago	no available values
Genome 2 months ago	FBA model Bob •	Bacteroides_thetaiotaomicron_V v2 Genome 2 months ago	no selected values
Media 2 months ago	Media (defaults to complete media) base.media *	Media 2 months ago	Expression threshold 0
base.media vi Media 2 months ago	Expression data set	base.media v/ Media 2 months ago	Expression uncertainty 0
✓ APPS category T Q S R →	Parameters (16 advanced parameters showing) hide advanced	✓ APPS category ▼ Q C R →	Activation coefficient
> Comparative Genomics 32	v Available Items - 1067	> Comparative Genomics 32	Max carbon uptake
> Expression 33		> Expression 33	50
> Genome Annotation 22	search	> Genome Annotation 22	
> Genome Assembly 25	I A Y I	> Genome Assembly 25	Max nitrogen uptake
> Metabolic Modeling [2]	1	> Metabolic Modeling ZI	50
> Microbial Communities 17	bio1	> Microbial Communities	
> Read Processing	0	> Read Processing	Max phosphate uptake
> Sequence Analysis		> Sequence Analysis	50
> Uncategorized	2	> Uncategorized	
> Upload 2	- diphosphate phosphohydrolase _c0	> Upload	Max sulfur uptake
> Utilities 31	Bob	> Utilities 31	50
> Virus 2	0	> Virus 2	
	3		

Problem

- Manual configuration
 - Which of these 100 solutions does organism X grow best?
- Take minutes to run
- Can't run tests sequentially (Web App)
- Exponential combination of inputs to test
 - 10 booleans = 2^10 = 1,024 combinations
 - 8 floats with a range of 0-100 is infinite
- Why not use the SDK?
 - We are trying to mimic the user when testing
 - We want to keep it simple for the non-technical users

Expression threshold	0.5
Expression uncertainty	0.5
Activation coefficient	0.9141714
Max carbon uptake	0
Max nitrogen uptake	0
Max phosphate uptake	0
Max sulfur uptake	0
Max oxygen uptake	0

11

Project Motivation

- 1. Primary
 - a. Automate programming experiments
 - b. Run experiments sequentially
 - c. Result increase efficiency of biologists

- 2. Side Effect (Secondary)
 - a. Tool can be used to test KBase as system
 - b. Certain experiment configurations affect / break Kbase?

Our Solution

- Take inputs from user either through a GUI or a file
- Automate browser functionality.
- Use a Job/Runner style to allow jobs to run sequentially
- Collect output from job(s) and return the output to the user in a file
- Output is viewable to catch errors and view configuration results

Selenium

- Browser automation software
- Primary use is automation of web applications, but can be extended to any task that needs to be repeated numerous times automatically.

Perfect fit for running multiple Flux Based Analysis experiments (FBAs)

Intended Users

- 1. Biologists
 - a. Allows biologists to view results from running many simulations to determine the desired outcome. Allows the Biologist to play with and configure the parameters to their likings. Can run X simulations at a time and try to find the preferred results.
- 2. KBase Developers
 - a. Projects output collection will flag errors and allow the developers to easily find and replicate bugs to allow for simpler debugging

Realistically: Anyone with proper KBase credentials.

Requirements

Functional:

- Configure Selenium to interface with KBase apps
- User sets parameters to automate using Selenium
- App will sample the configuration space from set parameters
- Automate the testing of sample configurations
- Collect output data from KBase
- Users will be able to randomize inputs
- All inputs from the KBase GUI will be available

Non-Functional:

- Will not noticeably disrupt KBase traffic flow
- App GUI will have similar layout as KBase GUI

Environmental:

- Will require a valid and active KBase account
- Standalone application that can be executed from the users desktop
- Must be run on device which supports Selenium

Standards Followed

IEEE 12207-2017 - ISO/IEC International Standard - Information Technology - Software Life Cycle Processes

This standard holds the purpose of defining a lifecycle standard for software projects from design, development, deployment, testing, and acquisition standpoints.

IEEE 1028-2008 - IEEE Standard for Software Reviews and Audits

This standard defines five different types of software reviews and audits that can be used in combination to increase the quality of software projects at various stages of their lifecycle.

IEEE 2430-2019 - IEEE Trial-Use Standard for Software Non-Functional Sizing Measurements

This standard defines how to size nonfunctional requirements in software.

Engineering Constraints

- Have to use selenium to manipulate GUI, cannot use SDK.
- Unable to modify KBase in any way
- Future development teams must be able to modify project.

Operational Environment

- Will require a valid and active KBase account
- Must be run on device which supports Selenium
- Standalone application that can be executed from the users desktop

Security Concerns

- Less risk the project is augmented current user capabilities
- User must provide authentication credentials

Testing Plan

- Unit testing
- Continuous integration testing
- Acceptance testing
- Results

Screenshots

Selenium Kbase GUI Prototype Run			Analyze Narratives Rak Run Flux Balance Analysis	
Activation Coefficient [0, 1]	*Carbon Uptake [0,100]	*Nitrogen Uptake [0,100]	HBA 1 day ago	Configure Info Job Status
Phosphate Uptake [0, 100]	*Sulfur Uptake [0, 100]	*Oxygen Uptake [0, 100]	Bob I FBAModel 2 months ago	Input Objects (I advanced parameter showing) hide advanced
leaction to Maximize	Expression Threshold [0,1]	Expression Uncertainty [0,?]	Bacteroides_thetaiotaomicron_V v2 Genome	FBA model Bob *
Gene Knockouts	Media Supplement	Custom Flux Bounds	2 months ago m122.media/ Media 2 months ago	Media (defaults to complete media) base media *
ReactionKnockouts			Acta 2 months ago	Expression data set
			✓ APPS category▼ Q, C R →	Parameters (16 advanced parameters showing) hide advanced Reaction to maximize
		8	> Comparative Genomics	✓ Available Items - 1067
	Expression Condition		> Expression	search
			> Genome Assembly 23	X • Y X
			> Metabolic Modeling 20	1
			> Microbial Communities	biol
			Read Processing	0
			> Sequence Analysis	2
	Read from file	Delete Results Card	> Uncategorized	rxn00001_c0
		7	> Utilities	- diphosphate phosphohydrolase_c0
All Davidson Malusan	Number of John	Controlled Random		000

References

- IEEE SA The IEEE Standards Association Home, IEEE Standards Association, standards.ieee.org/.
- Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology. 2018;36: 566. doi: 10.1038/nbt.4163

Questions?

Thank you for your time.